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Many biological systems dynamically rearrange their components through a sequence of configurations
in order to perform their functions. Such dynamic processes have been studied using network models that
sequentially retrieve a set of stored patterns. Previous models of sequential retrieval belong to a general class
in which the components of the system are controlled by feedback (input modulation). In contrast, we introduce
a new class of models in which the feedback modifies the interactions among the components (interaction
modulation). We show that interaction modulation models not only are capable of retrieving dynamic sequences,
but they do so more robustly than input modulation models. In particular, we find that modulation of symmetric
interactions allows retrieval of patterns with different activity levels and has a much larger dynamic capacity.
Our results suggest that interaction modulation may be a common principle underlying biological systems that
show complex collective dynamics.
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I. INTRODUCTION

Biological systems are often made of many components
that dynamically arrange themselves into specific configu-
rations. In some cases, this dynamics follows a particular
sequence of configurations which allows the system to per-
form some function, as illustrated in Fig. 1. For example,
neurons rearrange their neural activity in order to generate
a sequence of activity patterns [1,2]. Multiprotein assemblies
dynamically rearrange their protein composition several times
in a precise order as they perform a function, such as the
spliceosome processing pre-mRNAs [3]. Bacterial communi-
ties on marine particles undergo successions where the species
structure changes in reproducible patterns to degrade organic
matter [4]. Thus, sequential transitions of multicomponent
systems through well-defined configurations is a general phe-
nomenon in biology.

These specific configurations can be considered metastable
states of the dynamics. The ability of the system to tran-
sition from one such configuration to the next means that
the system can alter the stability of the configurations. This
can be achieved by controlling specific components, e.g., by
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changing the abundance of certain proteins in the case of as-
sembly dynamics, or by modulating the neuron firing activity
in neural systems. Such a scenario corresponds to a common
approach in control theory, i.e., modulating inputs on a sub-
set of variables to influence the full system [5]. In biology,
however, a different approach may be considered, namely,
to modify the interactions among the components. Unlike
physical systems where the interactions between elementary
particles are determined by fundamental forces, biological
components are complex objects and the effective interaction
strengths between them can be modified by third parties.
For example, the affinity between a pair of proteins can be
regulated by allosteric modulation through a third protein [6].
Similarly, the synapses among a pair of neurons can be mod-
ulated by a third neuron via heterosynaptic plasticity [7]. Can
such interaction modulation be used to control the dynamics
of complex systems? What are the differences in performance
between interaction and input modulation?

In this work we address these questions using a framework
inspired by the Hopfield neural network [8]. The Hopfield
network was originally developed as an abstract model of
associative memory capable of storing and retrieving particu-
lar network configurations. This paradigm has been extended
to model biological systems ranging from metabolic net-
works [9] to protein assemblies [10] and even ecosystems
[11]. Furthermore, sequential transitions among the stored
configurations have long been considered [12–15], aimed
at describing phenomena such as central pattern generation
[16], counting [17], and, more recently, free association [18],
memory recall [19], and assembly dynamics [20]. Here we
model the dynamics of retrieval by introducing a small set of
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FIG. 1. Sequential dynamics in complex systems. (a) Sequential
transition along a sequence of configurations is a common phe-
nomenon in complex systems, such as the assembly of multiprotein
complexes and the synaptic activity of neurons. Such dynamics may
be modeled by a network where the units si store multiple patterns
ξμ. (b) Sequential dynamics can be viewed as unfolding across a
rugged, changing landscape. (c) Transitions between configurations
are represented by time series of order parameters, which measure
how close the system is to each configuration. The peak of each
colored curve represents the retrieval of a particular configuration.

feedback units, which control the sequential transitions. When
formulated this way, previous models are shown to fall into a
class of models based on input modulation. We propose a new
class of models that rely on interaction modulation to trigger
autonomous transitions between configurations. Remarkably,
we find that modulation of symmetric interactions allows se-
quential retrieval of configurations that have different activity
levels, which cannot be reliably done by models that use
input modulation. Furthermore, this model can retrieve much
longer sequences than other models. Our results suggest that
interaction modulation may be biologically favored over input
modulation due to its robustness and large dynamic capacity.

II. BACKGROUND

Our model is based on the classic Hopfield network, which
can store and retrieve a given set of network configurations, or
patterns. The network is composed of N units, whose activities
are denoted by {si}N

i=1 and take continuous values 0 � si � 1.
The interactions among the units are characterized by a matrix
Wi j , which contributes to the input of each unit:

hi =
N∑

j=1

Wi js j + Vi. (1)

Here Vi is an external input to each unit that does not depend
on the current state si of the network. The dynamics of the
system is governed by

ṡi = −si + F (hi ), (2)

where F (·) is an activation function, which we choose to be
the Heaviside step function for simplicity.

The original task of a Hopfield network is to store and
retrieve p patterns, denoted by {ξμ}p

μ=1, each of which is a
vector with binary elements, ξ

μ
i ∈ {0, 1}. The patterns can

represent structured content, such as the pixels of black-and-
white images, but for simplicity we take them to be random
with an average activity a. Specifically, each pattern has a
fraction a of the units set to 1 and the rest set to 0. To
store those patterns, the following symmetric interactions are
introduced [8]:

Ji j = 1

Na(1 − a)

p∑
μ=1

(
ξ

μ
i − a

)(
ξ

μ
j − a

)
. (3)

For Wi j = Ji j and Vi = 0, the patterns will be fixed points
of the dynamics in Eq. (2) (as long as the total number of
patterns is far below the storage capacity). In other words, the
system will retrieve a pattern provided it is close to it initially,
where the proximity to patterns is measured by the p overlap
variables,

mμ = 1

Na(1 − a)

∑
i

(
ξ

μ
i − a

)
si. (4)

Thus, for si = ξ 1
i , we have m1 = 1 and mμ �=1 ≈ 0, because

random patterns are approximately orthogonal for large N .
Equations (1)–(3) define a dynamical system capable of stor-
ing and retrieving each individual pattern.

We are interested in networks that can autonomously re-
trieve a sequence of patterns, one after another. Already in
Hopfield’s original paper [8], it was suggested that sequential
retrieval could be achieved by introducing asymmetric inter-
actions of the form

J̃i j = 1

Na(1 − a)

∑
μ

(
ξ

μ+1
i − a

)(
ξ

μ
j − a

)
. (5)

These asymmetric interactions provide a directional bias from
every pattern ξμ towards the next pattern ξμ+1. The interac-
tion matrix is then generalized to Wi j = Ji j + λJ̃i j , where the
parameter λ represents the strength of the directional bias.
The rationale behind this construction is that, after a pattern
is retrieved due to the symmetric Ji j term, the asymmetric J̃i j

term will destabilize it and push the system toward the next
pattern in the sequence, i.e., ξ 1 → ξ 2 → ξ 3 · · · .

However, this simple model cannot produce sequences re-
liably [8]. Instead, the network exhibits no dynamics for λ less
than a certain value, or chaotic dynamics otherwise [21]. The
reason is that the Ji j and J̃i j terms act on the same timescale
such that either the stabilizing term dominates and leads to
no dynamics or the destabilizing term dominates and leads
to chaotic dynamics. Therefore, robust sequential dynamics
requires a separation of timescales between fast stabilization
and slow destabilization. This will allow the system to first
relax to a pattern ξμ, which is slowly destabilized, then go to
the next pattern ξμ+1, and so on, as we demonstrate below.

III. RESULTS

The required separation of timescales can be achieved
through feedback modulation. To this end, we introduce a set
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FIG. 2. Input versus interaction modulation. A Hopfield network
with units si (spherical nodes) is controlled by a set of feedback
units cμ (square nodes). These feedback units are updated on a slow
timescale τ (blue lines) and modulate either the input field Vi of the
main units or their interactions Wi j (orange lines).

of feedback units represented by the variables {cμ}p
μ=1, which

obey the dynamics

ċμ = − 1

τ
(cμ − mμ). (6)

This form of dynamics can be equivalently expressed as
a weighted average of the past network state, i.e., cμ =∫ t
−∞ K (t − t ′)

∑
i Wμisi(t ′)dt ′ with K (t ) ∝ e−t/τ and Wμi ∝

ξ
μ
i − a. Our results are insensitive to the exact form of the

kernel K as long as it has a slow timescale τ 	 1, such as
a step function (resulting in an average over a period τ ) or a
delta function (resulting in a time delay τ ) [12]. The specific
projection matrix W that we use can be considered as arising
from a learning process that associates each feedback unit
with a particular pattern, similar to the slow learning dynamics
modeled in Ref. [22].

These feedback units cμ will be used to destabilize the re-
trieved pattern by modifying the inputs to either the network,
i.e., Vi(cμ), or the interactions, Wi j (cμ), as schematically de-
picted in Fig. 2. We will elaborate on these two approaches
below, with four representative models summarized in Table I
(see also Fig. 3).

A. Sequential retrieval via input modulation

We first reformulate some well-studied models of sequen-
tial retrieval using our framework. For instance, the model
due to Horn and Usher [13] can be reexpressed by setting
Wi j = Ji j + λJ̃i j and Vi = −θ

∑
μ ξ

μ
i cμ. The latter is usually

referred to as an adaptive threshold, with θ the strength of
inhibition. In this model neurons that are active in a retrieved
pattern will experience an inhibitory input after a time ap-
proximately equal to τ , which tends to turn them off and thus

(a) (b)

(c) (d)
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FIG. 3. Heuristic depictions of the models considered in Table I
in terms of a slowly changing energy landscape. The network state
si currently occupies the pattern ξμ and will transition to ξμ+1. The
local minima represent the patterns stored through symmetric inter-
actions, the red arrows represent asymmetric interactions that bias
the transitions, and the dashed lines represent thresholds (not shown
when constant). The black arrows represent update to the feedback
units cμ on a slow timescale and the orange lines represent the effect
of the feedback. The input modulation models work by (a) raising the
inhibitory threshold (HU) or (b) tilting the energy landscape (SK),
whereas the interaction modulation models work by (c) enforcing the
directional bias (MAI) or (d) deforming the energy landscape (MSI).

destabilize the current pattern. This model uses separate terms
to serve different purposes: The symmetric interactions Ji j

stabilize each pattern, the external field Vi slowly destabilizes
the retrieved pattern through the feedback coupling, and the
asymmetric interactions J̃i j bias the system towards the sub-
sequent pattern. Figure 4(a) shows an example of sequential
retrieval using this model (more examples are shown in the
Supplemental Material [23], Fig. S1).

Similarly, we can reformulate the model due to Sompolin-
sky and Kanter [12] through identifying Wi j = Ji j and Vi =
λ

∑
μ(ξμ+1

i − a)cμ − θ . In this model, after the network re-
trieves a pattern, the feedback units cμ slowly activate to drive
the system towards the subsequent pattern. This is enough
to destabilize the current pattern if λ is sufficiently large
(see Sec. III C for feasible parameter regions). An example

TABLE I. Examples of input modulation (HU and SK) and interaction modulation (MSI and MAI) studied in this work.

Model Interaction Wi j Input Vi Feedback through cμ

HU Ji j + λJ̃i j −θUi(cμ) Ui(cμ) ≡ ∑
μ ξ

μ
i cμ

SK Ji j λUi(cμ) − θ Ui(cμ) ≡ ∑
μ(ξμ+1

i − a)cμ

MAI Ji j + λJ̃i j (cμ) −θ J̃i j (cμ) ≡ 1
Na(1−a)

∑
μ(ξμ+1

i − a)(ξμ
j − a)cμ

MSI Ji j (cμ) + λJ̃i j −θ Ji j (cμ) ≡ 1
Na(1−a)

∑
μ(ξμ+1

i − a)(ξμ+1
j − a)cμ
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FIG. 4. Examples of dynamic retrieval for input and interaction
modulation models: the (a) HU and (b) SK models that belong to
the input modulation class and modulation of (c) asymmetric interac-
tions (MAI) and (d) symmetric interactions (MSI). Each model stores
a cyclic sequence of four orthogonal patterns (p = 4). Each color
represents the overlap with a particular pattern ξμ, which is retrieved
when the overlap mμ approaches 1. As different overlaps sequentially
increase and decrease, the patterns are retrieved one after another,
corresponding to retrieval of the stored sequence (ξ 0 → ξ 1 → ξ 2 →
· · · ). The parameters used for each model correspond to the green
dots in Fig. 5 (SK, λ = 1.2 and θ = 0.37; HU, λ = 0.3 and θ = 0.62;
MAI, λ = 1.7 and θ = 0.325; and MSI, λ = 0.1 and θ = 0.06).

of this dynamics is shown in Fig. 4(b) (more examples in
Fig. S1 [23]).

B. Sequential retrieval via interaction modulation

Our reformulation of both models above makes it clear that
in these models the feedback units cμ modulate the input Vi to
achieve sequential retrieval. We now present new models of
sequential retrieval in which the feedback units cμ modulate
the interactions Wi j . Two types of such modulation are possi-
ble, which act either on the symmetric interactions Ji j or on
the asymmetric interactions J̃i j .

First consider a model for the modulation of the symmetric
interactions (MSI), which can be described by

Ji j (cμ) = 1

Na(1 − a)

∑
μ

(
ξ

μ+1
i − a

)(
ξ

μ+1
j − a

)
cμ. (7)

When the network has retrieved a pattern ξν for a period of
time, all cμ will decay to zero except cν . As a consequence,

all terms in Ji j will be turned off except for μ = ν. Therefore,
only one pattern ξν+1 will be stable, which is the one that
the network will retrieve subsequently. In other words, the
symmetric interactions store and retrieve one pattern at a time.
Asymmetric interactions J̃i j are needed to provide directional
bias towards subsequent patterns, even though the strength λ

can be small (see Sec. III C).
Alternatively, feedback units can be used to modulate the

asymmetric interactions (MAI). Consider a model with

J̃i j (cμ) = 1

Na(1 − a)

∑
μ

(
ξ

μ+1
i − a

)(
ξ

μ
j − a

)
cμ. (8)

As before, when the network has retrieved a pattern ξν for
some time, cν reaches a large value while all other cμ decay
to zero. In this model, however, only one directional bias is
active, corresponding to the transition ξν → ξν+1. For a suffi-
ciently large λ, this term will destabilize the current pattern
and push the system towards ξν+1. Compared to the MSI
model above, here all patterns are stored in the symmetric
interactions, but only one transition is enabled at a time.

In Figs. 4(c) and 4(d) we show two examples of sequen-
tial retrieval using the MSI and MAI models, respectively
(more examples in the Supplemental Material [23], Fig. S2).
As one can see, the dynamic trajectories are very similar to
the Horn-Usher (HU) and Sompolinsky-Kanter (SK) models,
which operate via input modulation. We therefore conclude
that interaction modulation is an equally feasible way of re-
trieving dynamic sequences.

C. Phase space of sequential dynamics

Within our general framework, all models of sequential
retrieval are characterized by the same two parameters: the
magnitude of the bias λ and the threshold θ . This allows us to
compare interaction and input modulation by systematically
examining the (λ, θ ) parameter space and identifying the re-
gions in which sequential retrieval occurs. To proceed, we
numerically solve the dynamical system and used a custom-
made score for the dynamics to quantify the accuracy of
sequential retrieval (see Appendix A for details).

Figure 5 presents (λ, θ ) plots for different levels of activity
a in each of the four models. Shaded regions correspond to
parameter combinations that produce sequential dynamics and
regions within the red contour correspond to high accuracy
(above 0.9). It can be seen that both input and interaction
modulation models have compact regions of parameter space
that allow sequential dynamics. However, the HU model is the
least robust compared to others, as small parameter changes
lead to dysfunctional behavior, such as dynamics with very
high frequencies or pattern-dependent amplitudes and fre-
quencies (see Fig. S1 [23]).

To better visualize the dependence of model performance
on the activity level a, we overlaid the regions of accurate
retrieval (red contours in Fig. 5) from different a values,
as shown in the last column of Fig. 5. The HU model has
very small retrieval regions for any a. For SK and MAI the
retrieval region drifts from a positive value of θ towards 0
as a increases. Notably, for MSI there is a compact region
where the retrieval regions for different values of a overlap.
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FIG. 5. Parameter space of sequential retrieval. The performance of each model for retrieving a cyclic sequence of four orthogonal patterns
is evaluated at different combinations of the bias λ and threshold θ . These parameters were numerically swept with increments �λ = �θ =
0.025. The grayscale color represents the accuracy score (see Appendix A); the red contours represent regions of high accuracy (above 0.9).
The first five columns correspond to different values of the pattern activity a, whereas the last column shows the overlay of the high-accuracy
regions for these different activity levels. The green dots in the a = 0.3 column correspond to the time series shown in Fig. 4.

This suggests that MSI is able to retrieve sequences among
patterns with varying activities, which we explore below.

D. Variability in pattern activity

So far we have focused on sequential retrieval of patterns
with the same activity. To study how well the models can
retrieve patterns with different activities, we consider patterns
ξμ which each have a particular activity level aμ (in which
case the formulas involving a are modified to have aμ instead).
We choose five patterns with aμ equally spaced within the
range 0.3 ± 0.2r, where the unevenness parameter r is varied
between 0 and 1. Because the patterns have different activities,
the order of these patterns in the sequence can affect retrieval.
Therefore, we compute the mean accuracy of retrieval over all
possible permutations of a given set of patterns (the scores are
first binarized according to a cutoff and then averaged).

Figure 6(a) shows the average accuracy as we vary the un-
evenness. The ratio of the gray area to the retrieval region for
uniform patterns (red contour) represents the ability of each
model to retrieve uneven patterns. It can be seen that the MSI
model is robust to unevenness in pattern activity, as expected
from our observation of Fig. 5, as well as to the ordering of the
patterns. We quantify this robustness in Fig. 6(b), where the

area of the retrieval region is plotted against the unevenness.
While this measurement of robustness decays rapidly for other
models, it is much more stable for MSI. Our results are not
qualitatively affected by altering the accuracy cutoff, as shown
in Fig. 6(c).

E. Dynamic storage capacity

So far we have studied sequential retrieval of a small num-
ber of patterns. We now study how these models differ in their
dynamic capacity, i.e., the ability to retrieve increasingly long
sequences of patterns. We quantify the dynamic capacity by
the longest sequence of patterns which may be stored by a
network of size N . To this end, we define pc as the critical
number of patterns beyond which the dynamic accuracy drops
below a threshold value, taken to be 0.7. The patterns are
randomly generated with the same activity level (a = 0.3),
and we average the accuracy over 100 sequence realizations.

Figure 7(a) shows the accuracy as a function of the number
of patterns for the four models in Table I. As the length
of the sequence increases, the retrieval accuracy decreases.
However, substantial differences exist in the behavior of these
models. For instance, the HU model shows no apparent im-
provement in its capacity to store longer sequences as the
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FIG. 6. Retrieval for variable activities and sequence compositions. (a) Phase diagrams are computed for each model at different
unevenness of activity levels [r values as marked in (b)]. The parameter ranges are the same as for Fig. 5. The retrieval accuracy at each
point (θ, λ) is first binarized according to a cutoff of 0.8 and then averaged over all permutations. This average accuracy is colored using a
grayscale and the red contours represent the shaded area for r = 0. (b) The ratio of the gray area to the red contoured region is calculated for
each unevenness value r. The curves show the mean of the area ratios over sequence permutations (for an accuracy cutoff of 0.8) and the color
shades show the standard deviations. (c) The area ratio for unevenness r = 1 is calculated as the accuracy cutoff is varied. The dashed line
corresponds to a cutoff of 0.8 used in (a) and (b), above which all models fail except MSI.

network size increases. In contrast, the MSI model remains
highly accurate for a large number of patterns. To corroborate
this observation, we plot the critical number of patterns pc

against the network size N , as shown in Fig. 7(b). While the

range of N is not sufficient to constitute a comprehensive
scaling analysis, this figure shows that the MSI model vastly
outperforms the other models in terms of dynamic storage
capacity.

FIG. 7. Dynamic capacity of sequential retrieval. (a) For each network size N , the average accuracy of retrieval is plotted against the
number of patterns p. The accuracy is calculated for a sequence of p randomly generated patterns with a = 0.3, averaged over 100 realizations.
A sigmoidal curve is fitted for each N and the critical number of patterns pc is defined as the value of p where the average accuracy falls below
0.7, indicated by the marker. (b) The estimated values of pc are plotted against the size of the network N , showing different scaling for each
model. The parameters used to simulate each model are the same as for Fig. 4 (see caption).
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IV. DISCUSSION

In this work we have used the Hopfield network as a
setup and formulated multiple models capable of sequentially
retrieving stored patterns. In our framework, the transition
between subsequent patterns is controlled by a set of feedback
units, where feedback is coupled either directly to the main
units in the case of input modulation or to the interactions
between these units in the case of interaction modulation.

Such a structure of a regulatory layer that exerts feedback
on a functional layer is common in biology. For example,
at the cellular level, self-assembly of protein complexes is
controlled by assembly factors [24]; at the neuronal level,
motor sequences could be generated from feedback between
the thalamus and cortex [25]. In our model we further assumed
a separation of timescales between the two layers, which is
also motivated by biological examples. In the case of pro-
tein complexes, the self-assembly of spliceosome occurs on
timescales below a second [26,27], while the processing of
pre-mRNA occurs on tens of seconds (BIONID: 108453). For
neurons, the thalamic dynamics may happen on much faster
timescales than cortical dynamics [25]. Furthermore, feed-
back in sequential dynamics has also been proposed to occur
through processes such as learning of asymmetric interactions
[14] or neuronal depression [28,29], both much slower than
neuronal firing. Indeed, a separation of timescales is com-
monly assumed in previous models of sequential dynamics,
some of which we discuss below.

A. Advantages and drawbacks of interaction modulation

While all models that we studied are capable of sequential
retrieval, we showed that an interaction modulation model
(MSI) outperforms the others. The MSI model is robust to
variations in the activity level of the patterns and the ordering
of the sequence and is capable of retrieving much longer
sequences than the others. The unique features of the MSI
model can be intuitively understood by investigating the local
and global stability of the dynamics.

As known from local analysis of the storage capacity of
the Hopfield model [30], the retrieval of a pattern can be
disrupted by crosstalk between different patterns that are not
fully orthogonal to each other. As we show in the Supplemen-
tal Material [23], while all models studied here are subject
to crosstalk with a similar scaling with network size N and
number of patterns p, in MSI the crosstalk is relatively sup-
pressed. This is because there is an extra factor of cμ in the
crosstalk term, which comes from interaction modulation, and
a prefactor λ that is small in MSI. As a result, we expect
MSI to have a larger critical number of patterns pc before the
crosstalk disrupts the retrieval of patterns.

Even for orthogonal patterns, there can be extra local
minima in the slowly changing energy landscape that stall
the sequential dynamics. To explore such global stability, we
added a Gaussian random term to the equation for feedback
units, which represents noise in the input or interaction mod-
ulation. We simulated the dynamics with p = 20 orthogonal
patterns and various levels of noise for the MSI and SK
models. Figures S4 and S5 in the Supplemental Material [23]
show how the accuracy of sequential retrieval decreases with

the noise level, with MSI being significantly more robust than
SK. Such robustness is likely due to the dynamics of the
network happening across a less rugged energy landscape than
the dynamics of alternative models (Table I). In associative
memory networks spurious minima arise as linear combi-
nations of stored patterns. The MSI model, however, stores
only a single pattern in Ji j at any moment during sequen-
tial retrieval. We therefore expect that dynamics unfold on
a smoother landscape, resulting in more accurate retrieval as
observed.

Besides these advantages, interaction modulation also ex-
hibits clear drawbacks. The main issue is that each feedback
unit has to generate O(N2) outputs to modulate all the interac-
tions, as opposed to O(N ) outputs for input modulation. This
requirement of large connectivity can be relaxed if we dilute
the outputs of the feedback units by suppressing a fraction
f of modulated interactions chosen at random. Figure S6 in
the Supplemental Material [23] shows that accurate sequential
retrieval can be retained even when up to about half of the
feedback outputs are removed in the MSI model. Nonetheless,
the number of required connections still scales as N2, which
poses an undeniable disadvantage in terms of potential imple-
mentation of such interaction modulation and complication of
learning rules, which we do not explore here.

A general form of interaction modulation by feedback units
can be written as Ji j (cμ) = ∑

μ T μ
i j cμ, where T μ

i j is some
tensor representing how the interaction between two nodes
(si, s j ) is modulated by a feedback unit cμ. For example, the
MSI model corresponds to T μ

i j ∝ (ξμ
i − a)(ξμ

j − a). Such a
model generally involves O(pN2) parameters, as each feed-
back unit can modulate the interactions in a different direction.
The random dilution of interactions studied above reduces
the number of parameters by a factor of f . Another situation
which may be biologically more plausible is when patterns
are sparse and localized, which would reduce the number of
parameters by a factor of a2. We have verified that in this
regime MSI still has a clear advantage over SK in terms of
dynamic capacity (Supplemental Material [23], Fig. S7).

We may also consider models where individual terms in
the interactions are not modulated separately. Two such ex-
amples are presented in Appendixes B 2 and B 3, where the
feedback units modulate the interactions collectively through
a factor φ({cμ}). In these cases, the number of parameters
is reduced to O(N2) for determining the overall Hopfield-
like connections Ji j . Figure S3 in the Supplemental Material
[23] shows that these models are capable of retrieving dy-
namic sequences. Thus, interaction modulation is a general
and versatile paradigm for sequential retrieval, with different
implementations that may be suitable for different biological
contexts, as we discuss below.

B. Relation to previous work

Many models of sequential retrieval, such as those pre-
sented in Sec. III A, originate from the study of associative
memory and the dynamics of real neurons. For example, in the
SK model the role of feedback is played by slow asymmetric
interactions [12]. Later models, such as HU, introduced such
slow feedback as neural fatigue, modeled as a neuron-specific
threshold that increases when the neuron remains active [13].
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Another model produces so-called latching dynamics through
combining a slow time-dependent threshold with neurons
of many internal states [18]. Sequence generation in neu-
ral networks has also been modeled using other approaches,
such as winnerless competition based on heteroclinic orbits
[22,31,32], coherent dynamics from chaotic networks [33],
switching-linear dynamical systems [25], and threshold-linear
networks based on graph-theoretic methods [34].

Coupling feedback to interactions has been studied in vari-
ous forms within the context of neural networks. In Ref. [14],
the authors are motivated by a type of allostery among neu-
rons: regulation of the efficacy of a given synapse by the
activity of another synapse. Their model allows pairwise in-
teractions to be modified by other neurons in the network and
bears resemblance to our MAI model. This phenomenon, by
which a synapse that is not currently active can be strength-
ened or weakened by the firing of a third modulatory neuron,
is referred to as heterosynaptic plasticity [7,35–37]. It has
inspired network models that can learn sequences through
synaptic competition [38]. Other biological phenomena, such
as neural fatigue [29], have also inspired models that mod-
ulate neural interactions rather than individual thresholds.
For example, in Ref. [28] a slow feedback is introduced
to depress the synapses between neurons. This model can
be reformulated in our framework of interaction modulation
similarly to the MSI model, as presented in Appendix B 1.
In Ref. [39], synaptic depression is used to control tran-
sitions between patterns by externally modulating a global
inhibition of all interactions among neurons, which allows
for transitions between correlated patterns. Instead of control-
ling such inhibition externally, we can modify their model
to couple the inhibition to a slow feedback and reformu-
late it within our framework, as presented in Appendix B 2.
Besides heterosynaptic plasticity, there is also extensive lit-
erature on synaptic modulation through various neurological
mechanisms [40], such as tripartite synapses where a synapse
between two neurons is dynamically modulated by one or
more astrocytes [41,42]. In line with our results, such sys-
tems have been shown to exhibit enhanced computational
capabilities [43].

Separate from a biological setting, the mechanism that we
introduce as feedback appears widely within control theory,
where it is typically studied in the context of control through
linear input modulation [5,44]. However, interaction modula-
tion is a less studied form of controlling network dynamics
[45], especially when the interactions are structured like in
the Hopfield network. Our results suggest that interaction
modulation may be a new paradigm for controlling nonlinear
dynamics.

C. Potential applications

In this paper we have used the Hopfield network as a
modeling framework to describe high-dimensional dynamics
that follows a low-dimensional trajectory. The choice of this
framework is largely driven by its mathematical simplicity
and conceptual clarity. Due to such simplicity, this framework
has been instrumental not only in the understanding of asso-
ciative memory in neuroscience, but also in other biological
problems, such as metabolic networks [9] and protein assem-

blies [10]. Furthermore, Hopfield networks have recently been
shown to be of practical use in the context of machine learning
[46]. Similarly, we expect that our paradigm of interaction
modulation can be applied to different fields of biology, with
specific implementations suited for given problems. We have
described several variants of interaction modulation models,
which may pave the way for such applications.

While in the preceding section we discussed the rela-
tionship of our work to neuronal systems, an alternative
application is the basis for modeling dynamics of heteroge-
neous protein mixtures. Recent work on protein self-assembly
and liquid mixtures [10,47] has shown a direct mapping be-
tween multicomponent protein mixtures and neural networks.
In this analogy, the role of a neuron is played by a pro-
tein species, the interaction matrix Ji j maps to the binding
affinity between proteins, the input field Vi translates to the
chemical potential, and the activation state of the neuron si

represents either the location of the protein in an assembly
or the concentration of the protein in a mixture. In this way,
input modulation corresponds to controlling protein assembly
dynamics by changes in their chemical potential. This type
of regulation is seen, for example, in the sequential assem-
bly of different cell-cycle complexes that contain cyclin and
cyclin-dependent kinases, during which the concentrations
of these key proteins and their chemical potentials oscillate
along the cell cycle [48]. Similarly, interaction modulation is
seen in protein assemblies, such as through allosteric inter-
actions common to many regulatory proteins, which allows
the affinity between two proteins to depend on the ligand
bound to the allosteric site. In this case, the affinity is best
described by a tensor T μ

i j similar to the MSI model of inter-
action modulation. Such a model would be complementary
to, and in fact more biologically plausible than, other interac-
tion modulation models recently studied in the self-assembly
literature [20].

D. Perspective

In biology, interactions among the components of a system
are often effective coarse-grained descriptions of compli-
cated microscopic mechanisms. The strength of such effective
interactions can be tuned by modifying the underlying mech-
anisms. Modification of interaction strengths is quite common
among biological systems, such as allosteric regulation of
protein interactions [49] and trait-mediated modification of
species interactions [50,51], yet the benefits of being able
to modify interactions is underexplored theoretically. Here
we have demonstrated that interaction modulation can be an
effective way of controlling the stability of system config-
urations and the direction of its dynamics, which may be
important for biological functions and evolution.

In complex systems, the interactions among many con-
stituent units give rise to various collective behaviors, such
as coherent motion [52–54] or collaborative functions [55].
The sequential transition of the system between multiple
metastable configurations that we modeled here is one type
of collective behavior, and we have shown that interaction
modulation is a robust way of controlling such behavior. Our
study may inspire future work on exploring the role of inter-
action modulation in other situations.
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APPENDIX A: COMPUTING RETRIEVAL ACCURACY

To evaluate the performance of sequential retrieval over an
extended period of time, we introduce a scoring scheme that
first calculates instantaneous scores and then averages them
over time to produce an overall accuracy. The instantaneous
score function is defined for each pattern as

Sμ({mν}) = G(mμ)∑
ν G(mν ) + ε

, (A1)

where

G(mμ) = expit(mμ; κ, ρ) − expit(−1; κ, ρ)

expit(1; κ, ρ) − expit(−1; κ, ρ)
, (A2)

with expit(x; κ, ρ) ≡ 1/(1 + e−κ (x−ρ) ). Our construction of
G(mμ) attenuates mμ below some threshold ρ towards 0 and
amplifies mμ above ρ towards 1, so instances of retrieval cor-
respond to a single high Sμ when the patterns are orthogonal.
The parameters were chosen as κ = 10 and ρ = 1 − a for all
analyses, and ε = 10−5 to make the instantaneous score well
defined even when mμ = 0 for all μ.

Each pattern is retrieved and remains stable for a contin-
uous interval of time, which we call an instance of retrieval.
We identify such intervals as blocks of time when G(mμ) ≈ 1,
which corresponds to mμ > θ . The score of an instance of
retrieval amounts to the time average of the instantaneous
scores over the interval

S̄μ = 1

t2 − t1

∫ t2

t1

Sμ({mν})dt, (A3)

where t1 and t2 are the bounds of the interval. The time series
of network dynamics is typically composed of many retrieval
instances, so we define the overall accuracy of sequential
retrieval as the average score over many retrieval instances
in the time series. In all cases, the network is simulated with
τ = 10 and �t = 0.1 for 6000 time steps. We compute the
accuracy only for the latter half of each time series to avoid
the transient dynamics in the beginning.

In the phase-space analysis of Sec. III C we chose a cutoff
between high-accuracy and low-accuracy regions of retrieval,
indicated by the red contours in Fig. 5. To determine an appro-
priate accuracy cutoff, we examined the distribution of scores
over parameter space (λ, θ, a) for each model, as shown in
Fig. 8. The rightmost peak (corresponding to high-accuracy
retrieval) is separated from the remaining peaks by a cutoff
accuracy of 0.9.

APPENDIX B: OTHER MODELS
OF INTERACTION MODULATION

Sequential dynamics through interaction modulation can
be implemented in models other than those presented in the

FIG. 8. Accuracy distributions. The distributions of accuracies
over the parameter phase space in Fig. 5 are calculated and marginal-
ized over a for (a) and (b) input modulation and (c) and (d) interaction
modulation models. The rightmost peak, corresponding to accurate
retrieval, is separated by an accuracy cutoff of 0.9 (only a small peak
is present in HU). For clarity, scores of zero are omitted.

main text. Here we provide two more examples in which the
symmetric interactions are modulated through mechanisms
different from that in MSI, with the rest of the model remain-
ing the same.

1. Complement of the MSI model

In the presented MSI model the symmetric interactions
Ji j have dynamics such that at any time only one pattern is
accessible, as only one cμ is active. The network retrieves the
pattern and, after some time, this pattern is purged from Ji j

and a new pattern is stabilized and retrieved. Here we present
a complementary model where at any given time all patterns
are present in Ji j except one. When the network retrieves one
pattern, the corresponding cμ will slowly suppress it in Ji j

while all other patterns remain. This model can be described
similarly to MSI in Table I except that

Ji j (cμ) = 1

Na(1 − a)

∑
μ

(
ξ

μ
i − a

)(
ξ

μ
j − a

)
(1 − cμ). (B1)

When cμ increases and ξμ is no longer stable, the network will
be pushed towards the next pattern ξμ+1 by the asymmetric
interactions J̃i j as in MSI. This model is similar in spirit to
that studied in Ref. [28], where part of the symmetric inter-
actions is depressed after a pattern is retrieved for some time.
Example dynamics for the complement of MSI are shown in
the Supplemental Material [23], Fig. S3A.
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2. Global inhibition

Another form of interaction modulation has been
considered in Ref. [39], where the symmetric interactions
take the form

Ji j = 1

Na(1 − a)

⎛
⎝∑

μ

(
ξ

μ
i − a

)(
ξ

μ
j − a

) − φ

⎞
⎠. (B2)

In this equation, the parameter φ represents a global inhibition
of all symmetric interactions. This parameter is externally
controlled to oscillate between a minimum value at which
patterns can be retrieved and a maximum value at which only
part of the previously retrieved pattern can remain active.
When φ is reduced again, the next pattern retrieved will be the
one that has the largest intersection with the active part [39].

In order to adapt this model to exhibit sequential dynamics,
we modify it so that the global inhibition φ is modulated
through feedback, rather than externally. In particular, we
consider

φ = θ
∑

μ

f (cμ), (B3)

where the parameter θ controls the maximum inhibition
strength. Together with the asymmetric interactions as de-
scribed in Table I for MSI, this model is capable of sequential

retrieval. Example dynamics for the modified global inhibition
model are shown in the Supplemental Material [23], Fig. S3B.

3. Global interaction suppression

Another model similar to Eq. (B2) can be formulated as

Ji j = φ

Na(1 − a)

∑
μ

(
ξ

μ
i − a

)(
ξ

μ
j − a

)
, (B4)

where

φ = 1 − θ
∑

μ

f (cμ). (B5)

In this model, the symmetric interactions are modulated by
an overall factor φ, which is controlled by the feedback units.
Here f (·) is a nonlinear activation function with a threshold at
1 − a, and θ is a parameter controlling the global suppression
of symmetric interactions. When a pattern has been retrieved
for some time, the factor φ is reduced to suppress the stabi-
lizing effect of the symmetric interactions. In the presence
of small asymmetric interactions, the system will be destabi-
lized and pushed towards the next pattern. Example dynamics
for this model are shown in the Supplemental Material [23],
Fig. S3C.
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